viernes, 23 de enero de 2009

SENSORES MODULADORES

1. Sensores resistivos.

Los sensores basados en la variacion de la resistencia eléctrica de un dispositivo son probablemente los mas abundantes. Esto de debe a que son muchas las magnitudes físicas que afectan al valor de la resistencia de un material.
En concecuencia, ofrecen una solución válida para numerosos problemas de medida. En el caso de los resistores variables con la temperatura, ofrecen también un método de compensación térmica aplicables en los sistemas de medidas de otras magnitudes.
Describiremos los sensores , mas frecuentes basados en la variación de la resistencia, exponiendo su fundamento, tecnología circuito eléctrico equivalente y aplicaciones.
Para la clasificacion de los diveresos sensores se toma como criterio el tipo de magnitud fisica a medida



1.1. Potenciómetros (Variables mecánicas)









un potenciómetro es un resistor al que le puede variar el valor de su resistencia. De esta manera, indirectamente se puede controlar la intensidad de corriente que hay por una línea si se conecta en serie, o la diferencia de potencial de hacerlo en paralelo.



1.2. Galgas extensométricas (Variables mecánicas).


Las galgas extensométricas son sensores de deformaciones basados en la variación de la resistencia eléctrica con la deformación, en un hilo conductor calibrado, o en resistencias construidas a base de pistas de semiconductor. Se emplean también, combinadas con muelles o piezas deformables para detectar de forma indirecta esfuerzos. En definitiva suelen usarse más que como sensores de deformación como sensores de medida indirecta de esfuerzos (fuerza o par).



En las galgas de hilo la resistencia esta formada por un hilo dispuesto en forma de zigzag sobre un soporte elástico, con una longitud preferente (L) a lo largo de la cual se encuentra la mayor cantidad de hilo . Al deformarse la galga en la dirección preferente, se produce un alargamiento del hilo y una disminución de su sección y, por tanto, una variación en su resistencia. Para poder medir variaciones de resistencia significativas, la galga debe tener una resistencia alta 100 y 1000 , y funcionar con un consumo muy bajo, para evitar que el efecto Joule provoque variaciones importantes de la resistencia por calentamiento. La medida de deformaciones requiere una meticulosa colocación de las galgas y una calibración laboriosa, y la amplificación suele realizarse por métodos diferenciales con tres hilos.



1.3. Termorresistencias (Variable térmicas)


Sensores pasivos de tipo analógico basados en el cambio de resistividad electrica de algunos metales o semiconductores con la temperatura.
Los conductores eléctricos presentan un aumento de resistencia con la temperatura.

Aprovechando esta propiedad se construyen sondas analógicas de temperatura. Para ello es preciso utilizar un material cuyo coeficiente (coeficiente térmico de resistencia) se mantenga relativamente constante y de una buena sensibilidad. Las sondas industriales se suelen construir a base de Platino cuyo coeficiente térmico es 0.00385 °C-1, dichas sondas suelen tener un valor nominal de 100 a 0°C, de donde se deriva el nombre Pt100. Las sondas Pt100 son aptas para un rango de temperaturas entre -250°C y 850°C, teniendo muy buena linealidad entre -200°C y 500°C

1.4. Termistores (Variables térmicas)

Un Termistor NTC (Negative Temperature Coefficient) es una resistencia variable cuyo valor va decreciendo a medida que aumenta la temperatura. Son resistencias de coeficiente de temperatura negativo, constituidas por un cuerpo semiconductor cuyo coeficiente de temperatura es elevado, es decir, su conductividad crece muy rápidamente con la temperatura.Se emplean en su fabricación oxidos semiconductores de niquel, zinc, cobalto, étc.

La relación entre la resistencia y la temperatura no es lineal sino exponencial:



, donde A y B son constantes que dependen del termistor. La característica tension-intensidad (V/I) de un termistor NTC presenta un carácter peculiar ya que, cuando las corrientes que lo atraviesan son pequeñas, el consumo de potencia (R * I2) será demasiado pequeño para registrar aumentos apreciables de temperatura, o lo que es igual, descensos en su resistencia óhmica; en esta parte de la característica, la relación tensión-intensidad será prácticamente lineal y en consecuencia cumplirá la ley de Ohm.

Si se sigue aumentando la tensión aplicada al termistor, se llegará a un valor de intensidad en que la potencia consumida provocará aumentos de temperatura suficientemente grandes como para que la resistencia del termistor NTC disminuya apreciablemente, incrementándose la intensidad hasta que se establezca el equilibrio térmico. Ahora nos encontramos, pues, en una zona de resistencia negativa en la que disminuciones de tensión corresponden aumentos de intensidad.


1.5. Magnetorresistencias (Variable magnéticas)
Su resistencia es dependiente del campo magnético. Si se le aplica un campo eléctrico a un conductor por el que circula una corriente eléctrica, dependiendo de la dirección del campo, además de la tensión de Hall hay una reducción de la corriente al ser desviados algunos electrones de su trayectoria. Ello significa que aumenta su resistencia eléctrica. este efecto fue descubierto por Lord kelvin en 1856.


1.6. Fotorresistencias (Variables ópticas)

Una fotorresistencia es un componente electronico cuya resistencia disminuye con el aumento de intensidad de luz incidente. Puede también ser llamado fotorresistor, fotoconductor, célula fotoeléctrica o resistor dependiente de la luz, cuya siglas (LDR) se originan de su nombre en inglés light-dependent resistor.

Un fotorresistor está hecho de un semiconductor de alta resistencia. Si la luz que incide en el dispositivo es de alta frecuencia, los fotones son absorbidos por la elasticidad del semiconductor dando a los electrones la suficiente energía para saltar la banda de conduccion. El electrón libre que resulta (y su hueco asociado) conduce electricidad, de tal modo que disminuye la resistencia.

Un dispositivo fotoeléctrico puede ser intrínseco o extrínseco. En dispositivos intrínsecos, los únicos electrones disponibles están en la banda de la valencia, por lo tanto el fotón debe tener bastante energía para excitar el electrón a través de toda la banda prohibida. Los dispositivos extrínsecos tienen impurezas agregadas, que tienen energía de estado a tierra más cercano a la banda de conducción puesto que los electrones no tienen que saltar lejos, los fotones más bajos de energía (es decir, de mayor longitud de onda y frecuencia más baja) son suficientes para accionar el dispositivo


1.7. Higrómetros resistivos (Variables químicas)

Un higrómetro resistivo es un elemento cuya resistencia cambia con cambios en la humedad relativa del aire en contacto con el elemento. Los higrómetros resistivos generalmente están formados por dos electrodos de metal laminado sobre una forma plástica. Los electrodos no deben tocarse entre si, y están aislados uno del otro por medio de la forma plástica. Una solución de cloruro de litio es entonces utilizada para recubrir completamente el dispositivo.

A medida que la humedad del aire circundante crece, la película de cloruro de litio absorbe más vapor de agua del aire. Esto hace que su resistencia disminuya marcadamente. Dado que la película de cloruro de litio está en contacto estrecho con los dos electrodos de metal, también decrece marcadamente a resistencia entre los terminales de los electrodos. La resistencia entre terminales puede entonces relacionarse a la humedad relativa.




1.8. Acondicionamiento: Puente de Wheastone, Amplificador de Instrumentación.



Puente de Wheastone Las salidas de las galgas de presión y los puentes son relativamente pequeñas. En la práctica, la mayoría de los puentes de galgas y transductores de presión tienen salidas de menos de 10 mV/V (10 mV de salida por volt de voltaje de excitación). Con un voltaje de exitación de 10 V , la señal de salida será de 100 mV. Es por esto que los acondicionadores de señal para galgas incuyen amplificadores para aumentar el nivel de la señal, para incrementar la resolución de la medición y mejorar las relaciones de señal a ruido. Los modulos SCXI por ejemplo incluyen amplificadores de ganancia programable, con ganancias de hasta 2000.


Amplificador de Istrumentacion Un amplificador de instrumentación es un dispositivo creado a partir de amplicadores operacionales. Está diseñado para tener una alta impedancia de entrada y un alto rechazo al modo comun (CMRR). Se puede construir a base de componentes discretos o se puede encontrar encapsulado (por ejemplo el INA114).
La operación que realiza es la resta de sus dos entradas multiplicada por un factor.


















2. Sensores de reactancia variable

La variación de la reactancia de un componente o circuito ofrece alternativas de medida a las disponibles en sensores resistivos. Muchas de ellas no requieren contacto físico con el sistema donde se va a medir, o bien tienen un efecto de carga mínimo. En concreto, ofrecen soluciones mejores para mediciones de desplazamientos lineales y angulares, en el caso de tratar con materiales ferromagnéticos, y para las medidas de humedad.En este tipo de sensores la falta de linealidad intrínseca en algunos de los principios de medidas empleados se superan mediante el uso de sensores diferenciales. Tienen en cambio una limitación en la máxima frecuencia de variación admisible en la variable medida, pues debe ser inferior a la frecuencia de la tensión de alimentación empleada, necesariamente alterna.Algunos sensores electromagnéticos son de hecho generadores, pero se han incluido aquí por la similitud de la señal de salida y la obtenida con algunos de los sensores de reactancia variable.



2.1. Sensores Capacitivos








2.1.1. Condensador variable

Un condensador eléctrico consiste en dos conductores separados por un dieléctrico (sólido, líquido o gaseoso), o el vacío. La relación entre la carga, Q, y la diferencia de potencial, V, entre ellos viene descrita por su capacidad, C=Q/V. Esta capacidad depende de la disposición geométrica de los conductores y del material, dieléctrico, dispuesto entre ellos, C=C(_,G).Por ejemplo, para un condensador formado por n placas planas paralelas iguales con area A, distancia d entre cada par, y un material entre ellas con constante dieléctrica relativa εr, la capacidad aproximada es:

Donde εo=8,85 pF/m es la constante dieléctrica del vacío.Así pues, cualquier fenómeno o magnitud que produzca una variación en εr, A o d, provocará un cambio en la capacidad C y, en principio, puede ser detectado mediante el dispositivo anterior. En general, cualquier cambio en el dieléctrico o en la geometría puede ser considerado para la detección del fenómeno que lo provoca. En el cuadro se da la capacidad para diversas configuraciones de interés.Si, por ejemplo, se considera la permitividad relativa, εr, para el aire es prácticamente 1, mientras que para el agua varía entre 88 a 0 °C y 55,33 a 100°C. La sustitución de aire por agua como dieléctrico producirá un cambio apreciable, que se puede aplicar, por ejemplo, a la medido del nivel de agua en un depósito, o a la de humedad si se dispone de un dieléctrico que absorba y desabsorba agua sin histéresis.En los materiales ferroeléctricos, por encima de la temperatura de Curie la constante dieléctrica es proporcional al recíproco de la temperatura, según



donde T es la temperatura actual, Tc es la temperatura de Curie y K una constante. En este caso, es la variación de temperatura lo que produce un cambio importante en la capacidad de un condensador que incorpore un material de este tipo.El empleo de un condensador variable como sensor está sujeto a una serie de limitaciones. En primer lugar, en la expresión de la capacidad se suele despreciar los efectos de los bordes, y ello puede que no siempre sea aceptable.En un condensador plano con placas paralelas, los efectos de los bordes son despreciables si la separación entre placas es mucho mayor que la dimensión lineal de éstas. En caso contrario, la ecuación (1.1) debe sustituirse por una aproximación mejor. Si se trata de dos placas rectangulares finas, con anchura a, longitud l y separación d, una fórmula mas correcta es



donde se ve que el error relativo decrece efectivamente al aumentar la relación a/d.

Un método para reducir el efecto de los bordes sin alterar las relaciones geométricas consiste en emplear guardas, consiste en rodear uno de los dos electrodos del condensador con un anillo puesto al mismo potencial que dicho electrodo. Si el otro electrodo del condensador se mantiene un potencial conocido, las líneas de campo eléctrico en el centro quedan delimitadas a una zona bien definida. El efecto de la separación g entre la guarda y el electrodo.

Otra consideración es el aislamiento entre placas, que debe ser alto y constante. Si, por ejemplo, en caso de humedad variable aparecieran resistencias parásitas en paralelo con C por variar el aislamiento ofrecida por el dieléctrico, se tendrían variaciones en la impedancia del condensador no atribuibles a un cambio de capacidad.Si la medida es sensible sólo al módulo de la impedancia, pero no a su fase, los errores pueden ser importantes. La conductivida es un problema a considerar en dieléctricos polares (que tienen momentos dipolares permanentes), pues suelen tenerla alta. Es el caso del agua, acetona y algunos alcoholes. La presencia de una componente resistiva en la impedancia, significará que hay una disipación de potencia que puede producir interferencias térmicas. En cambio, los dieléctricos no polares, como los aceites y los distintos derivados del petróleo, suelen tener una conductividad muy baja.Dado que sólo una de las dos superficies puede ponerse a tierra, las interferencias capacitivas son otra fuente de error a considerar. Según la figura 2.1.1.2, si otro conductor próximo, por e jemplo de la red de distribución eléctrica, está a un determinado potencial respecto a tierra, la placa que no este conectada a tierra alcanzará también un potencial que según su frecuencia puede interferir en el circuito hasta impedir la medida. Puede ser necesario apantallar eléctricamente esta placa y los cables conectados a ella respecto al entorno ajeno al sensor.Los cables de conexión son otra fuente de error. Al ser apantallodos para evitar las interferencias capacitivas, añaden una capacidad en paralelo con el condensador, por lo que se pierde sensibilidad pues la magnitud a medir hará cambiar sólo la capacidad del sensor, que es ahora una parte de la capacidad total. Si además hay movimiento relativo entre los conductores del cable y el dieléctrico, se tiene una fuente de error adicional que puede ser muy grave si las variaciones de geometría son importantes o si el dieléctrico del cable tiene propiedades piezoeléctricas notables.Los sensores capacitivos no son lineales o no lineales en sí mismo. Su linealidad depende del parámetro que varía y de si se mide la impedancia o la admitancia del condensador. En un condensador plano, por ejemplo, con εr o A variable, la salida es lineal si se mide la admitancia (proporcional a C), pero es no lineal si varía la separación entre placas, de la forma C=ε.A/x o C=ε.A/(d+x). En este segundo caso se tiene

Si se deriva para encontrar la sensibilidad, se obtiene










donde se ve que el sensor no es lineal pues la sensibilidad, lejos de ser constante, varia con x y es tanto mayor cuanto menores sean d y x. Esta última consideración podría sugerir el empleo de condensadores con d muy pequeña, pero hay que tener en cuenta el límite impuesto por la tensión de ruptura dieléctrica, que para el aire es de 30 KV/cm.



2.1.2. Condensador diferencial



Un condensador diferencial está formado por dos condensadores variables dispuestos físicamente de tal modo que experimenten el mismo cambio, bajo la acción de la magnitud a medir, pero en sentido opuesto. Mediante un acondicionamiento adecuado se consigue una salida lineal y una sensibilidad mayor que en el caso de un condensador variable simple.








Si la medida implica una diferencia de capacidades se tiene una dependencia linealcon x. Los sensores capacitivos diferenciales se emplean para medir desplazamientos entre 10-13 y 10 mm, con valores de capacidad del orden de 1 a 100pF. También se aplican a la medida de desplazamientos angulares.

2.1.3. Acondicionamiento: divisor de tensión, amplificador de carga, amplificador de transconductancia

2.2. Sensores inductivos

Cuando la tensión se convierte en información, a menudo, la inducción pasa a ser importante. Los sensores inductivos detectan objetos metálicos en áreas de exploración generalmente muy pequeñas. El diámetro del sensor es el factor decisivo para la distancia de conmutación, que con frecuencia es de sólo unos cuantos milímetros. Por otra parte, los sensores inductivos son rápidos, precisos y extremadamente resistentes.



2.2.1. Reluctancia variable

Este tipo de sensor se basa en la ley:

donde φ es el flujo de campo magnético, I es la corriente y N es el número de vueltas del inductor.Pero el flujo magnético es igual al cociente entre la fuerza magnetomotriz M y la reluctancia magnética R, y además, M = NI, por lo que:Para una bobina de longitud L y sección de área A, donde la longitud sea mucho mayor que el diámetro de las espiras se tiene:dondeμr es la permeabilidad relativa del núcleoL = recorrido de las líneas de campo en el aire.A = Area delas bobinas.Normalmente se aprovechan las variaciones de la longitud y de la permeabilidad. Cuando lo que varía es la distancia L se está hablando de sensores de entrehierro variable, y cuando lo que varia es la permeabilidad se dice que se está hablando de sensores de núcleo móvil.Esto sensores tiene los siguientes problemas:


*Los campos magnéticos parásitos afectan a L, por lo que se deben apantallar.

*La relación L y R no es constante y varía hacia los extremos.

*L y R son inversamente proporcionales, por lo que las medidas serán normalmente no lineales.

* La temperatura de trabajo debe ser menor a la de Curie del material usado. Sin embargo la humedad los afecta muy poco, tiene poca carga mecánica y una alta sensibilidad.


2.2.2. Inductancia mutua (LVDT)

Este tipo de sensores se basa en la variación de la inductancia mutua entre un primario y cada uno de los dos secundarios al desplazar el núcleo. La denominación LVDT viene de Linear Variable Differential Transformer. Aunque este dispositivo cambia la impedancia mutua, la salida es una tensión alterna modulada, no un cambio de impedancia. Tiene como limitaciones que en el centro la inductancia mutua no se anula, por deficiencias en el proceso de construcción. Además existe la presencia de armónicos en la salida. Sin embargo tiene las siguientes ventajas:•Resolución infinita.•Poca carga mecánica.•Bajo rozamiento: vida ilimitado y alta fiabilidad.•Ofrecen aislamiento eléctrico entre el primario y el secundario.•Aísla el sensor (vástago) del circuito eléctrico•Alta repetitividad.•Alta linealidad.•Tiene alcances desde 100 micrómetros hasta 25 centímetros.Cuando estos dispositivos tienen la electrónica DC se denominan LVDT de continua (DCLVDT). Si la medida es angular se denominan RVDT.


2.2.3. Acondicionamiento

3. Sensores electromagnéticos

Los sensores de proximidad magnéticos son caracterizados por la posibilidad de distancias grandes de la conmutación, disponible de los sensores con dimensiones pequeñas. Detectan los objetos magnéticos (imanes generalmente permanentes) que se utilizan para accionar el proceso de la conmutación. Los campos magnéticos pueden pasar a través de muchos materiales no magnéticos. El proceso de la conmutación se puede también accionar sin la necesidad de la exposición directa al objeto. Usando los conductores magnéticos (ej. hierro), el campo magnético se puede transmitir sobre mayores distancias para, por ejemplo, poder llevarse la señal de áreas de alta temperatura. Los sensores magnéticos tienen una amplia gama de usos. Por ejemplo: •Detección del objeto a través del plástico (containers)•Detección del objeto en medios agresivos a través de las paredes protectoras del Teflón. •Detección del objeto en áreas de alta temperatura.


3.1. Basados en la ley de Faraday

Estos sensores se utilizan en tacogeneradores o tacómetros de AC (generadores de energía eléctrica) para medir la velocidad angular w. La ley de Faraday dice: “En un circuito magnético o bobina con N espiras con un flujo magnético φ=f(t) se induce una tensión:”




3.2. Basados en el efecto Hall


Son empleados en la medida de campos magnéticos (gaussímetros), medida de corriente (amperímetros) y medida de potencias (vatímetros). El voltaje Hall es la diferencia de potencial que se crea en las superficies de una barra conductora, cuando por ésta fluye una corriente y está sometida a un campo magnético. En la siguiente gráfica se muestra un ejemplo de medición de corriente en donde, Iin crea B, a su vez B crea VH que es proporcional a Iin (Ibias = constante).